Cork Institute of Technology

Bachelor of Engineering (Honours) in Mechanical Engineering- Stage 2
(EMECH_8_Y2)
Summer 2008
Mathematics
(Time: 3 Hours)

Answer FIVE questions.
All questions carry equal marks.

Examiners: Mr. P. Clarke
Prof. M. Gilchrist Mr. T O Leary

1. (a) Solve the differential equation

$$
\frac{\mathrm{dy}}{\mathrm{dx}}+3 \mathrm{y}=12 \quad \mathrm{y}(0)=1 .
$$

By using the Three Term Taylor Method with a step of 0.1 estimate the value of y at $\mathrm{x}=0.1$. Calculate the error in this approximation.
(b) Find the general solution of the differential equation

$$
\frac{\mathrm{d}^{2} \mathrm{i}}{\mathrm{dt}^{2}}+4 \frac{\mathrm{di}}{\mathrm{dt}}+4 \mathrm{i}=50 \cos 3 \mathrm{t}
$$

Express the steady state part of the solution as a single periodic function of the form $R \sin (3 t-\alpha)$. Write down the maximum and minimum values of this function and find the smallest positive values of t for which these extreme values hold.
(c) Show that the expression

$$
\left(6 x^{2}-6 y\right) d x-(6 x-8 y) d y
$$

is the total derivative of a function. Find this function. Hence solve the exact differential equation

$$
\left(6 x^{2}-6 y\right) d x-(6 x-8 y) d y=0 \quad y(1)=2
$$

2. (a) Find a Taylor Series expansion of the function $f(x, y)=x \ln (x-3 y)$ about the values $\mathrm{x}=4, \mathrm{y}=1$. The series is to contain terms deduced from second order partial derivatives.
(7 marks)
(b) Find the partial derivatives of u and v with respect to x and y where

$$
u=\sin ^{-1}\left(\frac{2 y}{x}\right) \quad v=\sqrt{x^{2}-4 y^{2}} .
$$

(i) If $\mathrm{T}=\mathrm{f}(\mathrm{u})$ is an arbitrary function in u show that

$$
x \frac{\partial T}{\partial x}+y \frac{\partial T}{\partial y}=0
$$

(ii) Estimate the value of v if the values of x and y were estimated to be 5 and 2 with maximum errors of 0.06 and 0.03 , respectively.
(c) Find the minimum value of $V=x^{2}+2 x y$ where $y=6+x$. Eliminate one of the variables and use a Lagrangian Multiplier.
3. (a) Find the Inverse Laplace transform of the expressions

$$
\begin{array}{ll}
\text { (i) } \frac{20}{(\mathrm{~s}+1)\left(\mathrm{s}^{2}+4\right)} & \text { (ii) } \frac{4 \mathrm{~s}+8}{(\mathrm{~s}-1)(\mathrm{s}-3)^{2}}
\end{array}
$$

(b) By using Laplace Transforms solve the differential equation

$$
\begin{equation*}
\frac{d^{2} y}{\mathrm{dt}^{2}}+2 \frac{\mathrm{dy}}{\mathrm{dt}}+5 y=16 \mathrm{e}^{\mathrm{t}} \quad \mathrm{y}(0)=\mathrm{y}^{\prime}(0)=0 \tag{6marks}
\end{equation*}
$$

(c) Find the zero and the poles of the transfer function $\frac{\mathrm{L}[\mathrm{y}]}{\mathrm{L}[\mathrm{f}(\mathrm{t})]}$ where

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}+7 \frac{\mathrm{dy}}{\mathrm{dt}}+40 \mathrm{y}+34 \int_{0}^{\mathrm{t}} \mathrm{ydt}=\mathrm{f}(\mathrm{t}) \quad \mathrm{y}(0)=\mathrm{y}^{\prime}(0)=0 \tag{4marks}
\end{equation*}
$$

4. In answering the following question you are required to use the Method of Undetermined Coefficients. No marks will be awarded if any other method is used.

A mass is attached to a spring and a dashpot. The displacement x of the mass at any instant t is found by solving the differential equation

$$
\mathrm{m} \frac{\mathrm{~d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}+\mathrm{c} \frac{\mathrm{dx}}{\mathrm{dt}}+\mathrm{kx}=\mathrm{f}(\mathrm{t}) \quad \mathrm{x}(0)=\mathrm{x}^{\prime}(0)=0
$$

(a) Solve this differential equation where $\mathrm{m}=1, \mathrm{c}=4, \mathrm{k}=20$ and $\mathrm{f}(\mathrm{t})=40$. (7 marks)
(b) Solve this differential equation where $m=2, c=12, k=16, f(t)=64 t$
(c) Find the general solution of this differential equation where

$$
\begin{equation*}
\mathrm{m}=1, \mathrm{c}=0, \mathrm{k}=-4, \mathrm{f}(\mathrm{t})=20 \mathrm{e}^{2 \mathrm{t}} \tag{7marks}
\end{equation*}
$$

5. (a) By using a method of your own choice solve for x where

$$
\begin{array}{ll}
\frac{d x}{d t}=-2 x+y & x(0)=6 \\
\frac{d y}{d t}=5 x+2 y & y(0)=0
\end{array}
$$

By using a second method find the general solution for x and for y .
(b) Green's Theorem states: If C is a piecewise smooth closed curve that encloses a region R and if $f(x, y)$ and $g(x, y)$ have continuous partial derivatives throughout R then

$$
\oint_{C} f(x, y) d x+g(x, y) d y=\iint_{R}\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d A
$$

where the direction of C is anticlockwise.
(i) Verify Green's Theorem where $f(x, y)=4 y^{2}, g(x, y)=24 x y$ and R is the triangular region with vertices $(-1,0),(1,0)$ and $(1,4)$
(ii) By summing horizontally find the second moment of area of this region about the x -axis.
6. (a) A force $\mathbf{F}=6 \mathrm{x}^{2} \mathbf{i}+24 \mathrm{xyj}$ moves a mass the perimeter of the semi-elliptical region

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}=1 \quad x \geq 0
$$

Find the work done by the force.
By evaluating a double integral locate the centroid of this region.
(b) The region R is the sector of the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=5$ lying in the first and fourth quadrants with vertices $(0,0),(1,2)$ and $(1,-2)$.
(i) Evaluate the line integral

$$
\oint_{C} 2 y d x+4 x d y
$$

where C is the perimeter of this region. The direction of C is anticlockwise.
(ii) If V is the volume with a constant cross section that is described by the region R above and if $0 \leq z \leq 2$ then evaluate the triple integral

$$
\begin{equation*}
\iiint_{V} 6 x z d V \tag{11marks}
\end{equation*}
$$

7. (a) A variate can only assume values between $x=0$ and $x=2$. The probability density function is given by

$$
\mathrm{p}(\mathrm{x})=\mathrm{A}\left(3 \mathrm{x}^{2}+1\right)
$$

Find the value of A, the mean value of the distribution and the median value of the distribution correct to two places of decimal. This value is close to $\mathrm{x}=1.5$.
(b) A particular chemical is packed into bags with a mean content of 5 kg and a standard deviation of 0.015 kg . What percentage of bags contain (i) more than 5.02 kg and (ii)between 4.98 and 4.99 kg of chemical? EU regulations demand that a minimum content be printed on each bag and not more than 0.2% of bags are to weigh less than this minimum content. Find this minimum content.
(c) In a manufacturing process items are packed into batches of 50 and for a number of these batches the number of defective items were counted.

Number of defectives	0	1	2	3	≥ 4
Number of batches	70	21	8	1	0

Calculate the average number of defective items per batch. Calculate the probability that a batch of 200 of these items contains at most two defective items. Use both the Binomial and the Poisson distributions.

f(x)	$\mathbf{f}^{\prime}(\mathbf{x}) \mathrm{a}=$ constant
x^{n}	$n x^{\mathrm{n}-1}$
$\ln x$	$\frac{1}{x}$
e^{ax}	$\mathrm{ae}^{\text {ax }}$
sinx	cosx
$\cos x$	-sinx
$\sin ^{-1}(\mathrm{x})$	$\frac{1}{\sqrt{1-x^{2}}}$
$\sin ^{-1}\left(\frac{x}{a}\right)$	$\frac{1}{\sqrt{a^{2}-x^{2}}}$
uv	$u \frac{d v}{d x}+v \frac{d u}{d x}$
$\frac{\mathrm{u}}{\mathrm{v}}$	$\frac{\mathrm{v} \frac{\mathrm{du}}{\mathrm{dx}}-\mathrm{u} \frac{\mathrm{dv}}{\mathrm{dx}}}{\mathrm{v}^{2}}$

$\mathbf{f}(\mathbf{x})$	$\int \mathbf{f}(\mathbf{x}) \mathbf{d x} \quad \mathrm{a}=$ constant
$\sin \mathrm{x}$	$-\cos \mathrm{x}$
$\cos \mathrm{x}$	$\sin \mathrm{x}$
e^{ax}	$\frac{1}{\mathrm{a}} \mathrm{e}^{\mathrm{ax}}$

LAPLACE TRANSFORMS

For a function $f(t)$ the Laplace Transform of $f(t)$ is a function in s defined by $F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t \quad$ where $s>0$.

$\mathrm{f}(\mathrm{t})$	F(s)
A=constant	A
	s
t^{n}	n !
	$\mathrm{s}^{\mathrm{n}+1}$
$e^{\text {at }}$	1
	s-a
sinhkt	k
	$\overline{s^{2}-k^{2}}$
coshkt	s
	$\overline{\mathrm{s}^{2}-\mathrm{k}^{2}}$
$\sin \omega t$	ω
	$\overline{s^{2}+\omega^{2}}$
$\cos \omega \mathrm{t}$	S
	$\overline{\mathrm{s}^{2}+\omega^{2}}$
$\mathrm{e}^{\mathrm{at}} \mathrm{f}(\mathrm{t})$	F(s-a)
$\mathrm{f}^{\prime}(\mathrm{t})$	$\mathrm{sF}(\mathrm{s})-\mathrm{f}(0)$
$\mathrm{f}^{\prime \prime}(\mathrm{t})$	$s^{2} \mathrm{~F}(\mathrm{~s})-\mathrm{sf}(0)-\mathrm{f}^{\prime}(\mathrm{o})$
$\int_{0}^{t} f(u) d u$	$\mathrm{F}(\mathrm{s})$
$\int_{0}^{t} f(u) g(t-u) d u$	$\mathrm{F}(\mathrm{s}) \mathrm{G}(\mathrm{s})$
$\mathrm{U}(\mathrm{t}-\mathrm{a})$	$\mathrm{e}^{\text {-as }}$
	S
$\mathrm{f}(\mathrm{t}-\mathrm{a}) \mathrm{U}(\mathrm{t}-\mathrm{a})$	$\mathrm{e}^{\text {-as }} \mathrm{F}$ (s)
$\delta(\mathrm{t}-\mathrm{a})$	$\mathrm{e}^{\text {-as }}$

Note: $\cosh \mathrm{A}=\frac{\mathrm{e}^{\mathrm{A}}+\mathrm{e}^{-\mathrm{A}}}{2} \quad \sinh \mathrm{~A}=\frac{\mathrm{e}^{\mathrm{A}}-\mathrm{e}^{-\mathrm{A}}}{2}$

